ESZ Type 200

Unreinforced elastomer bearing with general supervisory approval

CALCULATION EXAMPLE

Principles

WILFRIED BECKER GMBH Elastomer Service Zentrale

Weilerhöfe 1 41564 Kaarst-Büttgen

Telefon (0 21 31) 758100 Telefax (021 31) 758111

E-Mail: info@esz-becker.de Internet: www.esz-becker.de

According to TOPALOFF's linear-elastic theory,
the calculatory shear stress (t) belonging to the average bearing compression and the total bearing torsion is limited. Corresponding values can be found in the approval for the ESZ type 200. The shear stresses from the vertical compression (1) and the torsion (2) are overlaid. The h_{2} values depend of the aspect ratio b / a. The linear interpolation of intermediate values is allowed. The bearing side a is always the shorter

$$
\begin{equation*}
\max \tau=\frac{\sigma_{\mathrm{m}} \cdot \mathrm{t}}{\eta_{2} \cdot \mathrm{a}} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\max \tau=\alpha \cdot G \cdot 0,5 \cdot(\mathrm{a} / t)^{2} \tag{2}
\end{equation*}
$$

$\Rightarrow \max \sigma_{m}=\left(\max \tau-\alpha \cdot \frac{G}{2} \cdot\left(\frac{\mathrm{a}}{t}\right)^{2}\right) \cdot \frac{\mathrm{a}}{t} \cdot \eta_{2}$ of the bearing sides.

b/a	1,0	1,5	2,0	3,0	4,0	6,0	8,0	10,0	∞
η_{2}	0,208	0,231	0,246	0,267	0,282	0,299	0,307	0,313	0,333

Equations (1), (2), (3) and table from Beton Kalender (Concrete Calendar)
1995 p. 712 or Lager im Bauwesen 2. Auflage (Bearings in the Construction Industry $2^{\text {nd }}$ Edition) p. 208/210 [Eggert, Kauschke]

Numerical example

- Verification of the permissible bearing stress $\sigma_{\text {perm,m }}$

The following boundary conditions are given:
(Calculation for characteristic values)
Bearing side: $a=120 \mathrm{~mm}$
Bearing side: $b=150 \mathrm{~mm}$
Bearing thickness: $t=15 \mathrm{~mm}$
Torsion from statics: $\alpha=6 \%$ (here over $b=150 \mathrm{~mm}$)
Torsion from standard specification 10 \%
Total torsion angle: $\alpha=16 \% \triangleq 0,016$
$\mathrm{b} / \mathrm{a}=1.25 \mathrm{P} \mathrm{h}_{2}=0.2195$ (interpolated from table)
Shear modulus $\mathrm{G}=1.5 \mathrm{~N} / \mathrm{mm}^{2}$ (from approval)
Shear stress $\mathrm{t}_{\text {perm }}=7.5 \mathrm{~N} / \mathrm{mm}^{2}$ (from approval)
Bearing area $A=18000 \mathrm{~mm}^{2}$
$\mathrm{G}_{\mathrm{k}}=100 \mathrm{kN} \& \mathrm{Q}_{\mathrm{k}}=60 \mathrm{kN} \mathrm{P}$ bearing class 1
$F_{z, \text { max }}=160 \mathrm{kN}$
$\sigma_{\text {exist }}=8.89 \mathrm{~N} / \mathrm{mm}^{2}$

Insert all values into equation (3):
$\max \sigma_{m}=\left(7,5-0,016 \cdot\left(\frac{1,5}{2}\right) \cdot\left(\frac{150}{15}\right)^{2}\right) \cdot \frac{120}{15} \cdot 0,2195 \geq \frac{F_{z, \text { max }}}{A}$
$\max \sigma_{m}=11,06 \mathrm{~N} / \mathrm{mm}^{2} \geq 8,89 \mathrm{~N} / \mathrm{mm}^{2}$
The permissible surface compression of $11.06 \mathrm{~N} /$ mm^{2} for the type 200 is larger than the existing compression of $8.89 \mathrm{~N} / \mathrm{mm}^{2}$; verification is therefore provided.
An ESZ type 200 with the dimensions $120 \times 150 \times 15 \mathrm{~mm}$ can be used with a total torsion of 16% with a characteristic applied load of 160 kN.

